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This paper shows that the phenomenon of orbital ordering should be detectable

by energy-®ltered quantitative convergent-beam electron diffraction (QCBED).

The structure factors of LaMnO3 crystals are calculated using a non-spherical

atomic scattering model of the Mn3+ ion. Several low-order electron structure

factors showed pronounced change with orbital ordering, in which the e1
g

electron orders in the 3d(3z2ÿ r 2) orbital leaving the 3d(x2ÿ y2) unoccupied. In

contrast, the X-ray structure factors showed very small change. Orbital order is

important in transition-metal oxides, including colossal magnetoresistive

manganite oxides. The calculations show that by using QCBED it is possible

to measure the subtle changes in electron structure factors due to orbital

ordering of the e1
g electron of the Mn3+ ion in an LaMnO3 crystal. A comparison

of methods for structure-factor measurement is given, including Bragg X-ray

and 
-ray diffraction, X-ray PendelloÈsung and critical-voltage methods. New

measurements by QCBED of structure factors in rutile are compared with the

Bragg X-ray values. These show that QCEBD can provide an accurate

extinction-free measurement of low-order structure factors, which is extremely

dif®cult or perhaps impossible when using other methods applied to real

crystals.

1. Introduction

Mn oxides of perovskite-related structure have attracted

considerable interest owing to the colossal magnetoresistence

effect. Doping the family of compounds La1ÿxCaxMnO3 with

divalent Ca2+ ions oxidizes Mn3+ to Mn4+, introducing holes in

the 3d valence band that give rise to a series of interesting

physical properties, such as charge, orbital and spin ordering,

and ferroparamagnetic and metal insulator phase transitions

(Goodenough, 1997; Radaelli et al., 1997).

The parent compound LaMnO3 crystal (space group

Pbnm), with a unit cell of a = 5.5367, b = 5.7473 and c =

7.6929 AÊ (Rodriguez-Carvajal et al., 1998), is an anti-

ferromagnetic insulator in which orbital ordering is estab-

lished owing to the cooperative Jahn±Teller (JT) effect

breaking the degeneracy of the electronic con®guration of

Mn3+ (t 3
2ge1

g). This particular C-type orbital ordering is

responsible for the A-type magnetic structure observed by

Wollan & Koehler (1955). Theoretical simulation has shown

that the A-type antiferromagnetic state and C-type orbital

structure (with the pattern of 3x2 ÿ r 2 and 3y2 ÿ r 2 in 3de1
g

orbitals) were stable in a model based on JT phonons, using

coupling values physically reasonable for LaMnO3 and

considering the small but important effect of octahedral tilting

(Hotta et al., 1999). LSDA+U band-structure calculation

predicts the same orbital ordering structure (Bala & Oles,

2000). It also showed that the ground state would be a

ferromagnetic metal without orbital order, which is contra-

dictory to experiment.

One method of observing orbital ordering is the direct

measurement of charge density in crystals. This method

requires highly accurate X-ray structure factors. To detect the

relatively weak bonding electrons, which mainly contribute at

low scattering angles, the accuracy of low-order structure-

factor measurement becomes crucial. Recent progress in

quantitative energy-®ltered convergent-beam electron

diffraction (CBED) has made the extinction-free measure-

ment of low-order structure factors possible (Zuo, 1998).

Using this method, combined with X-ray diffraction to

measure the high-order structure factors, Zuo et al. (1999)

have directly observed the d-orbital holes and CuÐCu

bonding in Cu2O crystals. The precision of quantitative CBED

may also be used to observe the Mn3+ ion 3d(3z2 ÿ r 2) orbital

ordering.

In this paper, the electron structure factors were calculated

using a non-spherical Mn3+ ion model with orbital ordering.

The effect of 3d(3z2 ÿ r 2) ordering on structure-factor

changes was evaluated. This provides a general idea of which

diffraction spot is most sensitive to orbital ordering, and

therefore needs to be measured by quantitative CBED.



2. Comparison of methods for low-order structure-
factor measurement

Several methods have been employed for low-order structure-

factor measurement, including (i) the X-ray single-crystal

PendelloÈsung method; (ii) conventional Bragg X-ray diffrac-

tion; (iii) Bragg 
-ray diffraction at high energies; (iv) quan-

titative energy-®ltered convergent-beam electron diffraction

(QCBED); (v) the critical-voltage (CV) electron-beam

method. These methods have various strengths and weak-

nesses, which we brie¯y review in the light of the requirement

that changes in charge density due to bonding should be less

than experimental and systematic errors. These changes in

low-order X-ray structure factors are normally less than 1%.

(Errors quoted in this section are those for X-ray, not electron,

structure factors).

The X-ray single-crystal PendelloÈsung method (Aldred &

Hart, 1973) is capable of low-order structure-factor meas-

urement with an accuracy of about 0.07% at best. This is about

the same or slightly better than the best measurements by the

CV and QCBED methods. The disadvantage of this method is

that it requires large defect-free single crystals (such as

`dislocation-free' semiconductor wafers), which limits its

application, excluding most `real' crystals, such as LaMnO3.

[This is heavily twinned with a twin size of several micrometres

(Dechamps et al., 2000).] The data analysis is based on, as in

the QCBED method, the perfect crystal theory, which expli-

citly includes all of the multiple-scattering effects which are

otherwise approximated when dealing with extinction in less

perfect crystals, as discussed below.

Conventional Bragg X-ray diffraction from inorganic

materials normally suffers from large extinction errors

affecting the low-order re¯ections important for studies of

bonding (Zuo et al., 2000). This effect has been studied in great

detail since the early days, when it was found that differences

of one order of magnitude existed between experimental

Bragg intensities and the predictions of either the kinematic

theory (which predicts angle-integrated intensity proportional

to |Fg |2 and to the atomic density squared) or the two-beam

dynamical theory (which predicts angle-integrated intensity

proportional to |Fg | and to the atomic density, and, without

absorption, a re¯ectivity of unity at the Bragg angle). Primary

and secondary extinction may introduce errors of more than

10% if uncorrected, which completely masks any bonding

effects. Correction schemes of great sophistication due to

Darwin (1922), Zachariasen (1967), Becker & Coppens (1974)

and others have been developed [see Becker (1977) for an

excellent review and critique]. These methods are based on a

mosaic block model, and on attempts to parameterize the

effects of crystal shape, multiple scattering and the defects

which produce misalignment between blocks. [It has been

suggested that dislocations may form low-angle grain bound-

aries between blocks, and that the scattering from dislocations

themselves will dominate bonding effects. These dislocation

densities are routinely measured using a transmission electron

microscope (TEM); however, a direct correlation between

grain boundaries and mosaic blocks has not been established

and the mosaic model remains phenomenological.] Hum-

phreys (1999) has pointed out that `X-ray scattering from the

dislocations is typically greater than the scattering from

bonding electrons'. Coherent two-beam multiple scattering

within each block is included in Darwin's treatment (primary

extinction) while incoherent coupling of two-beam intensities

describes scattering between blocks (secondary extinction).

The more recent general theory, predicting both types, starts

with the energy transport equations, but is found to fail if

primary extinction is large (Becker, 1977; Becker & Coppens,

1974). That these heroic efforts to develop correction schemes

have not been entirely successful can been seen from (i) the

fact that differences between structure factors published by

different groups greatly exceed their individual experimental

(random) errors, suggesting systematic errors, and (ii) the

differences between measurements of equivalent re¯ections.

For example, for rutile, after correction for extinction using

many careful measurements, Gonschorek (1982) ®nds

F(1�10) = 37.59 + 0.23 and F(110) = 38.70 + 0.17 for the

equivalent re¯ection. Both the erroneous difference between

the re¯ections (owing to extinction) and the standard devia-

tions preclude the observation of bonding modi®cations. In

Cu2O crystals, the X-ray structure factor F x(200) = 78.8 elec-

trons per unit cell (Zuo et al., 1999), while the measured value

by X-ray diffraction is only 90% of this value, owing to

extinction effects.

We may conclude that for inorganic crystals a treatment of

extinction suf®ciently accurate to expose bond modi®cations

to charge density would require a detailed non-statistical

description of defects and their scattering. For organic crystals

with larger unit cells, where dislocation energies are prohibi-

tively large and where bonding electrons constitute a greater

fraction of the total, the situation is much more favourable for

conventional X-ray diffraction (Coppens, 1997). Other factors

in¯uencing this work include accurate determination of

Debye±Waller factors, absorption corrections and polarization

corrections. Absorption and extinction corrections depend on

crystal shape and quality. The use of very small spherical

crystals is therefore indicated.

Bragg 
-ray diffraction at energies up to 400 keV uses

radiation whose wavelength is about the same (0.03 AÊ ) as that

used for electron diffraction. Primary extinction is reduced

when the extinction distance (which increases with beam

energy) exceeds the mosaic block size. Secondary extinction y

is also reduced, but not eliminated. [In Zachariasen's (1957)

two-beam model , extinction y = (1 + 2aQ)ÿ1/2, where Q is the

scattering strength, proportional to �2.] A recent 
-ray

diffraction study of Cu2O crystals (Lippmann & Schneider,

2000) using the Zachariasen model to correct extinction

effects initially found signi®cant extinction errors, revealed by

correlation between the extinction and multipole parameters.

The Bragg pro®les and integrated intensities were found to be

sensitive to chemical treatment of the crystal surfaces. An

attempt was made to obtain extinction-free results by extra-

polation to zero wavelength, assuming a Zachariasen model

and negligible primary and weak secondary extinction. The

effect was to increase the errors in high-order data, and to
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introduce scaling problems in combining data sets (Mackenzie

& Mathieson, 1992).

The process of extrapolation to zero wavelength assumes

the validity of a two-beam model for multiple diffraction.

Mackenzie & Mathieson (1992) have pointed out that the

structure factors of copper measured by the 
-ray method

were 1% lower than the values measured by the dynamical

electron diffraction (PendelloÈsung) method. They question the

applicability of Darwin's energy-transfer model to these

crystals and their imperfections, and suggest the use of other

methods (wedge-shaped crystals, pro®le analysis) for elim-

inating extinction.

Finally, the CV method of electron diffraction is capable of

highly accurate measurements of the ratio of the two structure

factors. Errors may be as small as 0.1% [see Spence & Zuo

(1992) for a review]. The method is based on three-beam

dynamical theory, which may be solved for the wavelength at

which, for all thicknesses, destructive interference owing to

multiple scattering causes an extinction in the second-order

re¯ection (or higher-order re¯ections) at the Bragg condition.

The resulting condition gives an expression for the ratio of the

two structure factors in terms of accelerating voltage. The

extinction condition is also a function of excitation error (since

three-beam theory contains only products of wavevector and

excitation error), hence `critical-voltage' conditions can be

found at many points in CBED patterns where three-beam

conditions apply. The disadvantage of this method is that it

provides only a ratio. Like all the most accurate methods,

errors are limited by knowledge of the Debye±Waller factor.

To test the accuracy of CBED and Bragg X-ray diffraction,

re®nement results for the 110 re¯ection in rutile were used as

an example. The X-ray diffraction data (Gonschorek, 1982;

Restori et al., 1987) were collected at 295 and 100 K in units of

electrons per conventional cell. The electron structure factors,

measured by CBED, were measured at 115 K, then converted

to X-ray structure factors for comparison (Spence & Zuo,

1992), in units of electrons per cell (see Appendix A for

details). All the values were converted to their corresponding

value at 100 K for comparison. Gonschorek's (1982) X-ray

re®nement result after extinction correction is F x(110) =

38.896 (�0.23 or �0.6%) (at 100 K). Restori et al.'s (1987)

X-ray re®nement result before extinction correction is

F x(110) = 32.8 (at 100 K). Our recent accurate re®nement by

CBED gives F x(110) = 37.272 (�0.009 or�0.025%) (at 100 K)

(Jiang et al., 2001) (the error analysis is obtained by averaging

several measurements).

Zuo et al. (2000) have used the Zachariasen (1967) two-

beam model to correct extinction effects in X-ray diffraction

data for Cu2O crystals. For the strong low-order 111 and 200

re¯ections of Cu2O crystals, the associated error in the

structure factors before extinction correction is about 10%;

after extinction correction, it is about 1%, which is insuf®cient

to see the changes in charge density due to bonding.

The accuracy of the QCBED method results from two

factors. Firstly, the nanoscale electron probe size is smaller

than one mosaic block, and hence the perfect-crystal Bloch-

wave many-beam theory can be applied with con®dence.

Extinction effects [and absorption (Zuo, 1998)] are thus either

fully accounted for or absent, depending on one's point of

view. The region from which data is collected can be imaged at

near-atomic resolution in the TEM to ensure that defects are

not present. Secondly, the Mott±Bethe formula (Spence &

Zuo, 1992) relating electron structure factors to X-ray struc-

ture factors shows a large enhancement of electron scattering

factors at small angles, owing to the effect of Poisson's equa-

tion, which relates the charge density, which diffracts X-rays,

to the potential, which diffracts electrons.

Finally, we summarize the major differences (advantages

and disadvantages) between Bragg X-ray diffraction and

QCBED. The advantage of Bragg X-ray diffraction is its

ability to measure high-order re¯ections very accurately; thus,

it can be used to determine atom coordinates, temperature

factors etc. The main disadvantage is the large measurement

error for strong low-order re¯ections owing to extinction. The

advantage of QCBED is its ability to measure the absolute

values of a few low-order structure factors accurately. The

disadvantage is that the crystal structure and thermal par-

ameters must be known. It is clear that Bragg X-ray and

QCBED methods complement each other. The advantages of

each may now be combined to allow charge-density mapping

in favourable cases with an accuracy increased by an order of

magnitude.

3. Orbital ordering model

For an isolated 3d ion, the ®ve d-orbital states are degenerate.

In a crystal with octahedral coordination, the ®ve d orbitals

are split by the crystal ®eld into three t2g [d(xy), d(yz), d(zx)]

orbitals and two eg [d(3x2 ÿ r 2), d(x2 ÿ y2)] orbitals. In

LaMnO3 crystals, the elongation of MnO6 octahedra, owing to

the cooperative JT distortion, further splits the t2g and eg

orbitals. Fig. 1 shows the schematic splitting of the d-electron

orbitals in Mn3+ in an LaMnO3 crystal. For the two eg orbitals,

3d(3z2 ÿ r 2) orbitals have lower energy than 3d(x2 ÿ y2)

orbitals. According to Hunda's law and to the Fermi±Dirac

statistical distribution theory, the four 3d electrons in an Mn3+

ion will ®rst occupy the four lower-energy orbitals with the

same spin direction, which are three t2g orbitals and one lower-

Figure 1
Schematic graph of 3d orbital splitting. A cubic crystal ®eld will split the
3d orbital into eg and t2g orbitals. JT distortion in LaMnO3 will further
split Mn3+ 3d(eg and t2g) orbitals. Four 3d electrons of Mn3+ will occupy
the four lower-energy orbitals.



energy eg orbital, which is the 3d(3z2 ÿ r 2) orbital. This is the

driving force for the 3d(3z2 ÿ r 2) orbital ordering.

We have adopted the model of 3d(3z2ÿ r 2) orbital ordering

of Mn3+ in LaMnO3 given elsewhere (Hotta et al., 1999; Bala &

Oles, 2000; Murakami et al., 1998; Rodriguez-Carvajal et al.,

1998). Fig. 2 shows a schematic diagram of 3d(3z2 ÿ r 2)

electron ordering of Mn3+ in an LaMnO3 crystal projected

along the c axis. The actual orbital direction is slightly tilted

from the ab plane owing to the oxygen octahedral tilting. The

3d(3z2 ÿ r2) orbital is always directed towards the most

remote O atoms. The local origin was selected at one Mn3+ ion,

with the z axis directed from the Mn3+ site to one of the

remote O atoms, and the x and y axes to the nearest O atoms

in the c and a directions. The other three Mn3+ ions' coordi-

nate systems were then obtained by symmetry operations.

4. Structure-factor calculations

4.1. Atomic scattering factors for non-spherical orbitals

The scattering factor depends upon atomic orientation if

the atomic charge density is non-spherical. An example is the

222 re¯ection in silicon, which is kinematically forbidden

within the spherical-atom approximation, but is ®nite with

non-spherical bonding.

Atomic scattering factors for non-spherical atoms have

been studied by McWeeny (1951), Freeman (1959), Dawson

(1964a,b) and Weiss & Freeman (1959). For aspherical atoms,

the direction of the scattering vector with respect to the

symmetry axis of an atom must be considered in order to

calculate the atomic scattering factor. Calculations for

d orbitals have been performed by Freeman (1959) and Weiss

& Freeman (1959).

For the atomic scattering-factor calculation, the basic scat-

tering matrix elements can be written as

fij�s� �
R
�ij�r� exp�i S � r� dv � R '�i 'j exp�i S � r� dr; �1�

where S is the scattering vector, with the modulus |S | =

4�sin(�)=�, � is the wavelength of the incident radiation, �ij =

'i'j is the atom charge density and 'i is an individual one-

electron wave function. For a non-spherical atomic charge

density, the observed scattering depends upon the scattering

vector S.

Expand exp(iS � r) into

exp�i S � r� � 4�
P1
l� 0

Pl

m�ÿl

i l jl �Sr�Ylm��; 
�Y�lm��; ��; �2�

where jl is an l th-order spherical Bessel function, � and 
 are

angular coordinates of S, and � and � are angular coordinates

of r.

Substitute (2) into (1) and write the single-electron wave

function as 'i = Ri (r)�l
m(�)�m(�), substitute into (1) and

separate the spherical harmonic function into products of

normalized associate Legendre functions. The result is

fij � �4��1=2 P
n

i n�2n� 1�1=2C n limi; limj

ÿ �
�

miÿmj
n

� cos �� ��miÿmj
�
� R1

0

RiRj jn�Sr� dr

� �4��1=2 P
n

i n�2n� 1�1=2
C n limi; limj

ÿ �
�

miÿmj
n

� cos �� ��miÿmj
�
� h jniij; �3�

where C n�limi; limj� are the integrals of the product of three

associated Legendre functions. These have been tabulated by

Condon & Shortley (Weiss & Freeman, 1959). S = 4�sin(�)=�
and jn(Sr) are spherical Bessel functions.

Equation (3) clearly indicates that the scattering-matrix

elements can be written as linear combinations of h jniij, which

have been tabulated in International Tables for X-ray Crys-

tallography (Ibers & Hamilton, 1974) using Hartree±Foch

(HF) wave functions.

If we assume mi = mj , then (3) reduces to

fij �
P

n

i n�2n� 1�C n limi; limi� �Pn cos�� �h jniij: �4�

Pn�cos �� is the ordinary Legendre function.

Using (3) and (4), Freeman (1959) and Weiss & Freeman

(1959) have deduced formulae in a more concise expression

for different orbitals.

For d electrons, when i = j, � = 0, the principal scattering

factors, fii (written as fi for short), are obtained from (4),

f 2�d� � h j0i � 10
7 h j2i � 3

7h j4i;
f 1�d� � h j0i ÿ 5

7h j2i ÿ 12
7 h j4i;

f 0�d� � h j0i ÿ 10
7 h j2i � 18

7 h j4i:
�5�

When � 6� 0, the principal scattering factors are expressed

in prime format, and can be written as a linear combination of

the principal scattering factors f 2(d), f1(d) and f 0(d),
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Figure 2
Schematic view of the orbital ordering in the ab plane of LaMnO3. The
orbital ordering along the c axis is expected to repeat the same pattern.
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f 2�d� � 1
8 1� 6 cos2��� � cos4���� �

f 2�d� � 1
2 1ÿ cos4���� �

f1�d�
� 3

8 1ÿ 2 cos2��� � cos4���� �
f 0�d�;

f 1�d� � 1
2 1ÿ cos4���� �

f 2�d� � 1
2ÿ 3

2 cos2��� � 2 cos4���� �
f1�d�

� 3
2 cos2��� ÿ cos4���� �

f 0�d�;
f 0�d� � 3

4 1ÿ 2 cos2��� � cos4���� �
f 2�d�

� 3 cos2��� ÿ cos4���� �
f 1�d�

� 1
4ÿ 3

2 cos2��� � 9
4 cos4���� �

f 0�d�: �6�
For t2g orbitals, the scattering factor is

f 0�t2g� � 1
3 2f 01 � f 02 ÿ 1

2� f 02;ÿ2 � f 0ÿ2; 2�
� �

: �7�
The individual eg orbitals are expressed as follows:

f 0�x2 ÿ y2� � f 02 � 1
2� f 02;ÿ2 � f 0ÿ2; 2�

f 0�3z2 ÿ r2� � f 00;
�8�

where f 2;ÿ2 is a cross term, from (3),

f 02;ÿ2 � 15
8 sin4��� exp�i 4
�h j4i;

f 02;ÿ2 � f 0 �ÿ2; 2:
�9�

Equations (5)±(9) will be used in the calculations.

4.2. The non-spherical Mn3+ ionic scattering factor in
LaMnO3

In order to calculate the scattering factor of non-spherical

Mn3+ ions, the angular coordinates � and 
 of the scattering

vector S in the local Mn3+ atomic coordinate system must be

determined. A coordinate-system transformation matrix is

required to transform the scattering vector from the crystal to

the atomic coordinate system so that the angular coordinates �
and 
 could be calculated. According to the orbital ordering

model given in x2, the Mn3+ ion at ( 1
2, 0, 0) is selected for

®nding the transformation matrix between the crystal and

atomic coordinate system. Using atomic coordinates given

elsewhere (Rodriguez-Carvajal et al., 1998), we found the

transformation matrix (TM) for this Mn3+ ion as

TM �
0:2038 0:0207 ÿ0:9788

ÿ0:7972 0:5839 ÿ0:1536

0:5683 0:8116 0:1355

24 35: �10�

A given scattering vector Scrystal = (xc, yc, zc) can be trans-

formed into the local Mn3+ atomic coordinate system Satomic =

(xa, ya, za). It is

S �
xa

ya

za

0@ 1A � TM� Scryst � TM�
xc

yc

zc

0@ 1A: �11�

Therefore, angular coordinates � and 
 can be obtained,

� � cosÿ1 za=jSaj� �; 
 � tanÿ1 ya=xa� �: �12�
By substituting (12) into (6) and (9), the non-spherical Mn3+

ionic scattering factor in an LaMnO3 crystal can be obtained.

The other three Mn3+ ions' local atomic coordinate systems

are obtained by applying symmetry operations, which are the

products of the symmetry operation matrix and the TM

matrix. The same method can be used to calculate their scat-

tering factors.

4.3. Structure-factor calculations for LaMnO3

To calculate the structure factors of an LaMnO3 crystal, cell

constants, atom coordinates and thermal parameters were

taken from Rodriguez-Carvajal et al. (1998). To show the

effect of orbital ordering, the electronic con®guration used for

Mn3+ ions was 3d 4(t 3
2g e1

g), the eg electron is assumed to

be a hybridized wave function  = x ' � 3d �3z2 ÿ r 2�� +
�1ÿ x� ' �3d �x2 ÿ y2��, of which x is the electron population

on the 3d(3z2 ÿ r 2) orbital. Ionic scattering factors were used

for La3+ and O2+, calculated by the Dirac±Fock method. The

charge density of the O2ÿ ion was calculated using a Watson

sphere of radius 1.2 AÊ ; this is the value that gives the best ®t to

experiment in the case of MgO (Zuo et al., 1999). For the Mn3+

ion, the tabulated value in International Tables for X-ray

Crystallography (Ibers & Hamilton, 1974) was used, calculated

using HF wave functions and taking the orbital ordering of

3d(3z2 ÿ r 2) into consideration. Both X-ray structure factors

(with Fg in units of electrons per cell) and electron structure

factors (Vg, which is a Fourier coef®cient of crystal potential in

units of volts) were calculated. The Mott formula (Spence &

Zuo, 1992) was used to obtain electron structure factors from

X-ray atomic scattering factors.

5. Results and discussions

5.1. Electron structure factors of LaMnO3

Calculations were completed for the low-order structure

factors of LaMnO3 with different electron occupancy x on the

3d(3z2 ÿ r 2) orbital of the Mn3+ ion. Both X-ray and electron

structure factors versus the occupancy of the 3d(3z2 ÿ r 2)

orbital are listed in Table 1. The electron population x is the

electron occupancy on the 3d(3z2 ÿ r 2) orbital. x = 0.5 corre-

sponds to one eg electron equally occupying two eg orbitals, in

which case there can be no orbital ordering since all orbitals

are equivalent; on the other hand, x = 1 represents the eg

electron occupying the 3d(3z2 ÿ r 2) orbital only, which

corresponds to complete orbital order. Only the low orders

with larger structure-factor changes are listed in the table. The

results clearly indicate the strong effect of orbital ordering on

electron structure factors, up to 11% for weak re¯ections and

1.45% for strong re¯ections. For X-ray structure factors, the

orbital order effect is very small, around 0.1±0.3% for the

stronger re¯ections.

Fig. 3 shows the electron structure factors of the 110

re¯ection [Vg(110)] versus electron population on 3d(3z2ÿ r 2)

(orbital order). It increases linearly with the occupancy of the

3d(3z2 ÿ r 2) orbital. This property could possibly be used in

experiments for measuring the electron occupancy on the

3d(3z2 ÿ r 2) orbital.

5.2. Charge-density map of LaMnO3

A charge-density difference map was obtained using an

occupancy of the electron orbital between x = 0.5 and x = 1,



which corresponds to the 3d(3z2 ÿ r 2) orbital half and

completely ®lled. The charge difference map was obtained by

the Fourier synthesis method, using 15996 Fourier coef®cients,

equal to a sphere of 2.5 AÊ ÿ1 in reciprocal space. The three-

dimensional rendering of the charge difference is striking

(Fig. 4a). It clearly shows the shape of the 3d(3z2 ÿ r 2) and

3d(x2 ÿ y2) orbitals. The blue region shows a total of 0.5

electron de®ciency with a 3d(x2 ÿ y2) hole. The green region

has a 0.5 electron gain in the 3d(3z2 ÿ r2) orbital. The charge-

density difference map along the c axis in Fig. 4(b) gives

similar results to the schematic ®gures of Murakami et al.

(1998). This charge-density difference could be mapped by

combining X-ray diffraction to measure the high-order

re¯ections with QCBED to measure the low orders, and so to

give direct evidence for the 3d(3z2 ÿ r 2) orbital ordering.

5.3. Discussion

From these calculations, we clearly see the effect of the

orbital ordering on structure factors, particularly on electron

structure factors. This suggests to us an opportunity that

orbital ordering in LaMnO3 crystals can be observed directly

by structure-factor measurement to map the charge density.

The question arises as to where the CV method can

measure changes in the ratio of the g and 2g (or other higher-

order re¯ections) structure factors and hence observe the

orbital ordering. In a real crystal, the changes in the ratio

measured by CV come not only from the orbital ordering

effect (i.e. changes in atomic orbitals) but also from bonding

(i.e. charge transfer), and the accuracy is limited by knowledge

of the Debye±Waller factor. Hence, changes in the ratio

cannot be used as an indication of orbital ordering. Only a

charge-density map can provide evidence of orbital ordering.

The X-ray structure factor changes by 0.26% or less for

the stronger re¯ections. For Bragg X-ray diffraction, the best

accuracy which can be reached is about 0.5% after extinction

correction (Fox, 1993). For higher-order stronger re¯ections,

the X-ray structure-factor changes are around 0.3% or less

owing to orbital ordering, beyond the X-ray accuracy limit.

Thus, Bragg X-ray diffraction alone cannot detect orbital

order in LaMnO3 crystals.

The changes in electron structure factors are large, up to

1.45% for the stronger re¯ections, enough for QCBED. Our

recent re®nement results on cuprite, silicon and rutile give an

accuracy for Vg of about 0.3% (Zuo et al., 1999; Ren et al.,

1997; Jiang et al., 2001). The three strong re¯ections of

LaMnO3, V(110), V(002) and V(020), change by ÿ0.85, ÿ1.45

and 0.52%, respectively, owing to orbital ordering, which are

within our re®nement limits. This suggests that this method

can be used to obtain 3d(3z2 ÿ r 2) orbital-ordering informa-

tion and to provide direct evidence of orbital order. However,

accurate X-ray measurements for the high-order re¯ections

are required to obtain a complete charge-density map and to

determine the temperature factors.
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Table 1
Electron and X-ray structure factors of six low-order re¯ections of an LaMnO3 crystal.

Vg(hkl ) are the Fourier transformation coef®cients of the crystal potential in units of volts. F x(hkl ) are the Fourier transformation coef®cients of the crystal charge
density in units of electrons. The 3deg electron population con®guration is x	[3d(3z2 ÿ r 2] + (1 ÿ x)	[3d(x2 ÿ y2)].

Electron population x on 3d(3z2 ÿ r 2) orbital of an Mn3+ ion

Diffraction spot x = 0.5 x = 0.8 x = 1 Structure change ratio

Electron structure factors V(101) 0.451 0.444 0.440 ÿ2.5%
V(110) 2.593 2.580 2.572 ÿ0.85%
V(002) 2.860 2.885 2.904 ÿ1.45%
V(020) 8.006 8.031 8.048 0.52%
V(120) 0.945 0.972 0.990 4.5%
V(210) 0.416 0.391 0.374 11%

X-ray structure factors F(101) 10.614 10.631 10.643 0.26%
F(110) 82.613 82.657 82.686 0.089%
F(002) 92.171 92.080 92.019 0.16%
F(020) 215.07 214.91 214.80 0.13%
F(120) 24.249 24.030 23.884 ÿ1.5%
F(210) 9.555 9.769 9.912 ÿ3.6%

Figure 3
Electron structure factors of the 110 re¯ection of an LaMnO3 crystal
Vg(110) versus electron population on the 3d(3z2 ÿ r 2) orbital, x = 0.5
and x = 1 corresponding to totally non-ordered and ordered, respectively.
The linearity of the relationship may be used to determine the electron
populations in the Mn3+ 3d(3z2 ÿ r 2) orbital.



research papers

10 Jiang et al. � Orbital ordering in LaMnO3 Acta Cryst. (2002). A58, 4±11

We emphasize here that the electron structure factor is

more sensitive to the bonding electrons which mainly contri-

bute to low-order re¯ections. For scattering vectors greater

than about 1.0 AÊ ÿ1, X-ray diffraction rapidly becomes much

more accurate. For the orbital ordering in LaMnO3 crystals,

only electron diffraction by QCBED can be expected to detect

the orbital ordering directly.

6. Conclusions

A brief comparison has been made of various methods of

accurate structure-factor measurement. X-ray and electron

structure factors of LaMnO3 have been calculated using a non-

spherical Mn3+ model as a function of orbital occupancy. The

electron structure factors are signi®cantly altered due to

orbital ordering of the 3d(3z2 ÿ r 2) orbital of the Mn3+ ion,

and this change should be measurable by quantitative CBED.

By contrast, the calculated X-ray structure factors show a very

small change, which probably cannot be measured by

conventional Bragg X-ray diffraction. New measurements of a

structure factor in rutile by QCBED are reported, and these

are compared with Bragg X-ray values. The results con®rm

that QCBED can provide accurate extinction-free measure-

ments of low-order structure factors, which is extremely

dif®cult or perhaps impossible to obtain when using other

methods applied to real inorganic crystals.

APPENDIX A
Calculation of X-ray structure factor Fx(110) from
measured electron structure factor U(110)

The relationship between the X-ray structure factor and

electron structure factor can be written as (Spence & Zuo,

1992)

F x
g �

P
ij

Zi exp ÿ�jihihj

ÿ �
exp ÿ2�i g � ri� � ÿ C
s2=
� �Ug;

�13�

where Zi is the atomic number, �ij are the anisotropic

temperature factors, hi (i = 1, . . . , 3) are the Miller indices of a

re¯ection g, ri is the atomic position vector, C is a constant,

s = 2�sin(�B)=�, where �B is the Bragg angle and � is the

wavelength of radiation, 
 is the cell volume, 
 is a relativistic

constant and Ug is the measured electron structure factor. C =

131.2625 if s, 
 and Ug are given in AÊ .

In order to convert the X-ray from one temperature to

another temperature, the following approximation formula is

used:

F x
g �T2�

F x
g �T1�

�
P

ij fi�s2� exp�ÿ�ij�T2�hihj� exp�ÿ2�i g � ri�2��P
ij fi�s1� exp�ÿ�ij�T1�hihj� exp�ÿ2�i g � ri�1��

; �14�

where T1 and T2 represent temperatures and fi(s) are the

scattering factors of the atoms. In a crystal, because of the

bonding effects, fi(s) is unknown. A neutral atomic model was

used for approximate conversion.

The measured electron structure factor Ug(110) for rutile

is 0.06370 (�0.00018) AÊ ÿ2 (at 115 K, acceleration voltage is

119.52 V). All the temperature factors and crystal constants

were taken from the most accurate measurements reported by

Burdett et al. (1987). Using (14), the calculated X-ray structure

factor is F x(110) = 37.247 (�0.009) electrons per unit cell at

115 K. Using (14), the X-ray structure factor at 100 K is

37.272 (�0.009) electrons per unit cell.

We thank Mike Steven for discussions. This work was

funded by NSF award DMR 9973894.

Figure 4
Charge-density difference map of an LaMnO3 crystal between the
3d(3z2ÿ r 2) orbital ordered (x = 1) and non-ordered (x = 0.5) state. (Note
that Mn3+ ions are shifted inside the cell for display.) (a) Three-
dimensional rendering of the charge difference map. The blue region
shows a 3d(x2 ÿ y2) orbital hole (no electron). The red region shows a
3d(3z2 ÿ r 2) orbital with one electron in it. (b) Two-dimensional charge-
density difference map. The contour line increment is 0.2 e AÊ ÿ2. The
dashed line represents the electron gain area. The solid line represents
the electron loss area.
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